
X3T11/96-

X3T11/Project xxxx-D/REV 0.4

HIGH-PERFORMANCE PARALLEL INTERFACE -

Scheduled Transfer

(HIPPI-ST)
February 28, 1997

Secretariat:

Information Technology Industry Council (ITI)

ABSTRACT: This standard specifies a data transfer protocol that uses small control messages to pre-
arrange data movement. Buffers are allocated at each end before the data transmission, allowing full-
rate, non-congesting data flow between the end devices. The control and data may use different
physical media, or may share a single physical medium. Procedures are provided for moving data over
HIPPI and other media.

NOTE:

This is an internal working document of X3T11, a Technical Committee of Accredited Standards
Committee X3. As such, this is not a completed standard. The contents are actively being modified by
X3T11. This document is made available for review and comment only. For current information on the
status of this document contact the individuals shown below:

POINTS OF CONTACT:

Roger Cummings (X3T11 Chairman) Ed Grivna (X3T11 Vice-Chairman)
Distributed Processing Technology Cypress Semiconductor
140 Candace Drive 2401 East 86th Street
Maitland, FL 32751 Bloomington, MN 55425
 (407) 830-5522 x348, Fax: (407) 260-5366 (612) 851-5200, Fax: (612) 851-5087
 E-mail: cummings_roger@dpt.com E-mail: elg@cypress.com

Don Tolmie (HIPPI-ST Technical Editor)
Los Alamos National Laboratory
CIC-5, MS-B255
Los Alamos, NM 87545
 (505) 667-5502, Fax: (505) 665-7793
 E-mail: det@lanl.gov

working draft - HIPPI-ST Rev 0.4, 2/28/97

ii

Comments on Rev 0.4

This is a preliminary document undergoing lots of
changes. Many of the additions are just place
holders, or are put there to stimulate discussion.
Hence, do not assume that the items herein are
correct, or final – everything is subject to change.
This page tries to outline where we are; what has
been discussed and semi-approved, and what
has been added or changed recently and
deserves your special attention. This summary
relates to changes since the previous revision.
Also, previous open issues are outlined with a
single box, new open issues ones are marked
with a double bar on the left edge of the box.

Changes are marked with margin bars so that
changed paragraphs are easily found, and then
highlights mark the specific changes. The list
below just describes the major changes, for detail
changes please compare this revision to the
previous revision.

Please help us in this development process by
sending comments, corrections, and suggestions
to the Technical Editor, Don Tolmie, of the Los
Alamos National Laboratory, at det@lanl.gov. If
you would like to address the whole group
working on this document, send the comment(s)
to hippi@network.com.

1. In 3.1.18, added definition for "upper-layer
protocol (ULP).

2. In 3.3, added acronym for "K, kilo".

3. In 4.2, 1st paragraph, changed "An STU
shall…" to "An STU shall be the data
payload portion of a Data Operation. A Data
Operation shall…". In the 3rd paragraph,
changed "…Control Operations and
STUs…" to "…Control Operations and Data
Operations…".

4. In figure 3, changed the title of the lower
block from "Scheduled Transfer Unit (STU)"
to "Data Operation". Added "(STU)" within
the lower block. Changed the size to
account for the extra 64 bytes.

5. In figure 4, changed "Op-Retry timer" to
"Op-timeout"; changed "Max-Retries" to
"Max_Retry", and changed the subscripts
from "n" to "I", "j", and "k".

6. In 4.3, changed "…during a Transfer. Pre-
arrangement means that the buffers are

allocated at…" to "…during a Transfer and
allocate buffers at…".

7. In 4.3.1, 4th bullet, deleted "for each
direction of the Virtual Connection" at the
end of the sentence.

8. In 4.3.2, changed "…higher-layer logical
connections…" to "…upper-layer entities…".

9. In 4.3.5, changed the title from "Max-STU"
to "Max-STU size", and made this change
several other places in the text. Changed
"…limits the data…" to "…establishes the
maximum data…". Changed "…desired
Max-STU…" to "…desired Max-STU which it
is prepared to receive…". Split the
paragraph into two.

10. In 4.3.6, 1st paragraph, changed "…and end
device…" to "…and Originating Source…".
Added the reference to 9.4.2. Changed
"…should report…" to "…shall advertise…".
Changed "...END Operation." to "…END or
State_Response Operation to prevent
deadlocks.". In the 2nd paragraph, changed
"…Slots available…" to "…Slots available
(Slots value)…". Did a global change to
make all of the Slot parameters "Slots". In
the paragraph following the NOTE, changed
"…reducing…" to "…thus adjusting…".
Changed "…if necessary." to "…to account
for outstanding Operations.".

11. In 4.4.2, changed "…own 16-bit…" to "…own
non-zero 16-bit…". Deleted the misplaced
hyphen in "Response".

12. In 4.4.5, changed "…and…" to "…and/or…".

13. In 4.4.6, deleted the last two sentences,
starting "Except for the…".

14. In 4.7, 1st paragraph, changed "…(Bufsize
size)…" to "…(Bufsize)…". In the 2nd
paragraph, changed "…first Block of a
Transfer…" to "…first STU of a Transfer…".
In the note, changed "…can send the correct
data set for any Block of the Transfer, even
if…" to "…and Final Destination, can
compute the starting address without
knowing the size of the first Block. For
example, if…".

15. In 4.5.3, rewrote the text so that
State_Response is not the reply when an

working draft - HIPPI-ST Rev 0.4, 2/28/97

iii

operation is rejected. Added table 1 listing
the responses.

16. In 4.5.4, 2nd paragraph, and throughout the
document, changed "Op-retry" to "Op-
timeout". In the last paragraph, and
throughout the document, changed "upper-
layer protocol" to "ULP".

17. In 4.5.5, changed "…an interrupt or
equivalent signal…" to "…signal…".

18. In 5.2, started a list of some of comments to
be considered when we write the service
interface.

19. In 6.1, under OS_Bufx and OS_Offset,
added "In DATA Operations: Opaque field,
e.g., for passing ULP parameters."

20. In 6.2 and figure 8, swapped the order of the
Interrupt and Notify bits, and swapped the
order of the Concatenate and
Source_Concatenate bits.

21. In 6.2, under Notify, changed "Other
Operation's…" to "Non-DATA Operations…".
Under Interrupt, changed "…and interrupt or
equivalent signal…" to "…a signal…", and
added the reference to 4.5.5. Under the
note following Interrupt, changed "If only
Notify…" to "If Notify…", and changed
"…then an interrupt…" to "…then a
signal…".

22. In 6.2, under Data Channel assignment,
changed "…Originating Source is requesting
(with a Request_To_Send Operation) to
send data on the specified Data Channel." to
"…Data Channel to be used to carry DATA
Operations. The Data Channel value is
assigned in a Request_To_Send Operation,
and is copied in each DATA Operation."
Added the paragraph, and note, about the
maximum STU size to be sent on each Data
Channel.

23. In 7.1, under A-Max-STU, changed "…the
same as…" to "… ≤…", and added the
reference to 4.3.5.

24. In 7.2, changed "…be sent by end device B
to inform…" to "…inform end device A
whether the Virtual Connection is accepted
or not. If accepted, the parameters
associated with this Virtual Connection are
passed to A.". Under Flags, added the
Reject flag and added the reference to 4.5.3.
Under B-Max-STU, changed "…the same
as…" to "… ≤…", added the reference to

4.3.5, and changed "…from B to A…" to
"…from A to B…".

25. In 8.1, added the first sentence reading "
Request_To_Send asks that space be
allocated for a Transfer." Changed
"…Request_To_Send…" to
"Request_To_Send with Persistent = 1…".

26. In 8.2, added the first portion reading "
Request_To_Send_Response shall inform
the Originating Source whether the transfer
was accepted or not. If accepted, the…".
Under Flags, added the Reject flag and
added the reference to 4.5.3.

27. In 8.3, added the first portion reading "
Request_To_Receive asks for a single Block
of data to be sent from a previously
allocated location in the Originating Source.
The…"

28. In 8.5, under Flags, added the Data Channel
assignment flags, and the last sentence
describing their use.

29. In 8.7, changed "…Request_Port,
Request_To_Send, or Request_To_Receive
…" to "…Request_To_Receive…". The
same change was made under the Flags
entry. Under B_num, changed "…DATA…"
to "…DATA Operation…", and changed
"…to determine the…" to "…to identify the
Operation containing the B_num…".

30. Tables 2 and 3 were updated to reflect the
changes in the text, i.e., added the Reject
flag bit to RQPR and RTSR, added the Data
Channel assignment flag bits to DATA,
changed "-Slot" to "-Slots", changed "D-Key"
to "R-Key", and added "Opaque" twice in
DATA. In addition in the notes, changed
"Destination" to "receiver" and changed
"issuing" to "sending".

31. In 9.1, changed "…system dependent." to
"…system or Port dependent.". Added "(use
a Request_State / State_Response pair to
measure on a per-Port basis)".

32. In Table 4, added "State_Response and
Request_To_Receive" as responses to
Request_To_Send. Added
Request_To_Receive and its response.

33. In 9.2, 3rd paragraph, changed "…shall not
be guarded with the Op-retry timeout" to
"…may or may not use the Op-timeout to
indicate failure". Changed "…for timing out
these Operations" to "…for timing out these
data movement Operations".

working draft - HIPPI-ST Rev 0.4, 2/28/97

iv

34. In 9.5.3, added "(see 4.3.7) during the
Virtual Connection establishment (see 7.1
and 7.2)" to the first sentence.

35. Added 9.5.4 for Source_Concatenate, with
text similar to 9.5.3.

36. Added 9.5.5 for Persistent, with text similar
to 9.5.3.

37. In Table 5, added entries for
"Persistent_Error" and
"Source_Concatenate_Error".

38. In figure A.1, changed the reference from
figure "6" to figure "7". Changed the size to
232 – 64 bytes.

39. In the text of annex A, changed "The Virtual
Channel for a Data Operation shall be as…"
to "DATA Operations shall use Data
Channel 1, 2, or 3 as…".

working draft - HIPPI-ST Rev 0.4, 2/28/97

v

Contents
Page

Foreword .. ix

Introduction.. x

1 Scope ... 1

2 Normative references.. 1

3 Definitions and conventions .. 2
3.1 Definitions ... 2
3.2 Editorial conventions .. 2

3.2.1 Binary notation ... 2
3.2.2 Hexadecimal notation ... 3

3.3 Acronyms and other abbreviations ... 3

4 System overview .. 3
4.1 Control Channels and Data Channels .. 3
4.2 System model ... 4
4.3 Virtual Connections ... 6

4.3.1 Sequences and Operations... 6
4.3.2 Ports... 7
4.3.3 Keys ... 7
4.3.4 Buffer size (Bufsize) ... 7
4.3.5 Max-STU size... 7
4.3.6 Slots and Sync parameter... 7
4.3.7 Concatenate ... 8
4.3.8 Source_Concatenate .. 8
4.3.9 Persistent ... 8

4.4 Data movement... 9
4.4.1 Sequences and Operations... 9
4.4.2 Transfer identifiers (R_id and S_id) .. 9
4.4.3 Transfer length (T_len) ... 9
4.4.4 Blocks... 9
4.4.5 Block size ... 10
4.4.6 STUs .. 10
4.4.7 Bufx and Offset .. 10
4.4.8 OS_Bufx and OS_Offset .. 10
4.4.9 Packing examples ... 10

4.5 Operations management ... 11
4.5.1 Flow control ... 11
4.5.2 Status Operations ... 12
4.5.3 Rejected Operations ... 12
4.5.4 Lost Operations ... 12
4.5.5 Interrupts .. 12

5 Service interface.. 13
5.1 Service primitives.. 13
5.2 Sequences of primitives .. 13

6 Schedule Header ... 14
6.1 Schedule Header parameters .. 14
6.2 Scheduled Transfer flags... 15

working draft - HIPPI-ST Rev 0.4, 2/28/97

vi

7 Virtual Connection management .. 16
7.1 Request_Port .. 16
7.2 Request_Port_Response ... 17
7.3 Port_Teardown.. 17
7.4 Port_Teardown_ACK... 18
7.5 Port_Teardown_Complete ... 18

8 Data movement ... 19
8.1 Request_To_Send... 19
8.2 Request_To_Send_Response ... 19
8.3 Request_To_Receive .. 20
8.4 Clear_To_Send ... 21
8.5 DATA .. 21
8.6 Request_State... 22
8.7 State_Response .. 23
8.8 END .. 23
8.9 END_ACK ... 24

9 Error processing... 26
9.1 Operation timeout.. 26
9.2 Operation Pairs ... 26
9.3 Syntax errors... 26

9.3.1 Undefined Opcode.. 26
9.3.2 Unexpected Opcode ... 26

9.4 Virtual Connection errors ... 27
9.4.1 Invalid Key or Port .. 27
9.4.2 Slots exceeded .. 27
9.4.3 Unknown EtherType ... 27
9.4.4 Illegal Bufsize ... 27
9.4.5 Illegal STU size .. 27

9.5 Scheduled Transfer errors ... 27
9.5.1 Invalid S_id .. 27
9.5.2 Bad Data Channel specification .. 27
9.5.3 Concatenate not available .. 27
9.5.4 Source_Concatenate not available ... 27
9.5.5 Persistent not available... 28
9.5.6 Out of Range B_num, Bufx, Offset, S_count, or Sync................. 28
9.5.7 Request_To_Receive problem.. 28
9.5.8 Undefined Flag ... 28

working draft - HIPPI-ST Rev 0.4, 2/28/97

vii

Tables

Table 1 – Response to a rejected Operation .. 12
Table 2 – Virtual Connection Operations summary between end devices

A and B .. 24
Table 3 – Data transfer and status Operations summary between end devices

G and H .. 25
Table 4 – Operation pairs guarded by Op-timeout .. 26
Table 5 – Summary of logged errors .. 29

Figures

Figure 1 – System overview... 3
Figure 2 – HIPPI-ST over different media .. 4
Figure 3 – Information hierarchy .. 4
Figure 4 – Scheduled Transfer Final Destination model 5
Figure 5 – Data packing examples ... 11
Figure 6 – HIPPI-ST service interface.. 13
Figure 7 – Schedule Header contents .. 14
Figure 8 – Flags summary ... 15
Figure A.1 – HIPPI-ST Operations carried in HIPPI-6400-PH Messages 30

Annexes

A Using HIPPI-6400-PH as the lower layer.. 30

B Using HIPPI-FP as the lower layer... 32

C Scheduled Transfer example... 33

working draft - HIPPI-ST Rev 0.4, 2/28/97

ix

Foreword (This foreword is not part of American National Standard X3.xxx-199x.)

This American National Standard specifies a data transfer protocol that uses
small control messages to pre-arrange data movement. Buffers are allocated at
each end before the data transmission, allowing full-rate, non-congesting data
flow between the end devices. The control and data may use different physical
media, or may share a single physical medium. Procedures are provided for
moving data over HIPPI and other media.

This standard provides an upward growth path for legacy HIPPI-based systems.

This document includes annexes which are informative and are not considered
part of the standard.

Requests for interpretation, suggestions for improvement or addenda, or defect
reports are welcome. They should be sent to the X3 Secretariat, Information
Technology Industry Council, 1250 Eye Street, NW, Suite 200, Washington, DC
20005.

This standard was processed and approved for submittal to ANSI by Accredited
Standards Committee on Information Processing Systems, X3. Committee
approval of the standard does not necessarily imply that all committee members
voted for approval. At the time it approved this standard, the X3 Committee had
the following members:

(List of X3 Committee members to be included in the published standard by
the ANSI Editor.)

Subcommittee X3T11 on Device Level Interfaces, which developed this
standard, had the following participants:

(List of X3T11 Committee members, and other active participants, at the
time the document is forwarded for public review, will be included by the
Technical Editor.)

working draft - HIPPI-ST Rev 0.4, 2/28/97

x

Introduction

This American National Standard specifies a data transfer protocol that uses
small control messages to pre-arrange data movement. Buffers are allocated at
each end before the data transmission, allowing full-rate, non-congesting data
flow between the end devices. The control and data may use different physical
media, or may share a single physical medium. Procedures are provided for
moving data over HIPPI and other media.

Characteristics of a HIPPI-ST include:

– A hierarchy of data units (Scheduled Transfer Units (STUs), Blocks, and
Transfers).

– Support for Get and Put Operations.

– Parameters exchanged between end devices for port selection, transfer
identification, and Operation validation.

– Features supporting efficient mapping between the sender's and receiver's
natural buffer sizes.

– Provisions for resending partial Transfers for error recovery.

– Mappings onto HIPPI-6400-PH, HIPPI-FP (for HIPPI-800 traffic), and
Ethernet lower-layer protocols.

– Mappings from IPv4, IPv6, and MPI upper-layer protocols onto Scheduled
Transfer.

working draft proposed American National Standard ANSI X3.xxx-199x

1

High-Performance Parallel Interface –
Scheduled Transfer (HIPPI-ST)

1 Scope

This American National Standard specifies a data
transfer protocol that uses small control
messages to pre-arrange data movement.
Buffers are allocated at each end before the data
transmission, allowing full-rate, non-congesting
data flow between the end devices. The control
and data may use different physical media, or
may share a single physical medium. Procedures
are provided for moving data over HIPPI and
other media.

Specifications are included for:

– Virtual Connection setup and teardown;

– determining the number of Operations the
other end can accept;

– determining the buffer size of the other end;

– exchanging Key, Port, and transfer identifiers,
and buffer size values, specific to the end
nodes;

– determining a maximum size that will not
overrun receiver buffer boundaries;

– using buffer indices and 64-bit addresses;

– acknowledging partial transfers so that
buffers can be reused;

– providing means for resending partial
Transfers for error recovery; and

– terminating transfers in progress.

Note that parts of the Scheduled Transfer
protocol depend upon in-order delivery by the
lower layer, which may not be available on all
media.

2 Normative references

The following American National Standards
contain provisions which, through reference in
this text, constitute provisions of this American
National Standard. At the time of publication, the
editions indicated were valid. All standards are
subject to revision, and parties to agreements
based on this standard are encouraged to
investigate the possibility of applying the most
recent editions of the standards listed below.

ANSI X3.183-1991, High-Performance Parallel
Interface – Mechanical, Electrical, and Signalling
Protocol Specification (HIPPI-PH)

ANSI X3.210-1992, High-Performance Parallel
Interface – Framing Protocol (HIPPI-FP)

ANSI X3.xxx-199x, High-Performance Parallel
Interface – 6400 Mbit/s Physical Layer (HIPPI-
6400-PH)

ANSI/IEEE Std 802-1990, IEEE Standards for
Local and Metropolitan Area Networks: Overview
and architecture (formerly known as IEEE Std
802.1A, Project 802: Local and Metropolitan Area
Network Standard — Overview and Architecture).

ISO/IEC 8802-2:1989 (ANSI/IEEE Std 802.2-
1989), Information Processing Systems – Local
Area Networks – Part 2: Logical link control.

American National Standard
for Information Technology –

working draft - HIPPI-ST Rev 0.4, 2/28/97

2

3 Definitions and conventions

3.1 Definitions

For the purposes of this standard, the following
definitions apply.

3.1.1 Block: An ordered set of one or more
STUs within a Scheduled Transfer. (See figure 3
and 4.4.4.)

3.1.2 Buffer Index (Bufx): A 32-bit parameter
identifying the starting address of a data buffer.
Bufx may be either a pointer to the starting
address, or the most significant part of a 64-bit
starting address.

3.1.3 Concatenate: An addressing mode using
64-bit addresses rather than buffer indices. (See
4.3.7.)

3.1.4 Control Channel: The logical channel
that carries the Control Operations.

3.1.5 Control Operation: A control function
consisting of a Schedule Header and an optional
32-byte payload. (See figure 3.)

3.1.6 Data Channel: The logical channel that
carries the data payload.

3.1.7 Final Destination: The end device that
receives, and operates on, the data payload.
This is typically a host computer system, but may
also be a non-transparent translator, bridge, or
router.

3.1.8 Key: A local identifier used to validate
Operations. (See 4.3.3.)

3.1.9 Operation: A Scheduled Transfer
function, i.e., a Control Operation or the data
movement specified in an STU.

3.1.10 optional: Characteristics that are not
required by HIPPI-ST. However, if any optional
characteristic is implemented, it shall be
implemented as defined in HIPPI-ST.

3.1.11 Originating Source: The end device
that generates the data payload. This is typically
a host computer system, but may also be a non-
transparent translator, bridge, or router.

3.1.12 Persistent: A control mode used to
retain buffers for multiple Transfers. (See 4.3.9.)

3.1.13 Port: A logical connection within an end
device. (See 4.3.2.)

3.1.14 Scheduled Transfer: An information
transfer, normally used for bulk data movement
and low processing overhead, where the
Originating Source and Final Destination
prearrange the transfer using the protocol defined
in this standard.

3.1.15 Scheduled Transfer Unit (STU): The
data payload portion of a Data Operation moved
from an Originating Source to a Final Destination.
STUs are the basic components of Blocks. (See
figure 3 and 4.4.6.)

3.1.16 Slot: A space reserved for a Control
Operation, or the Schedule Header portion of an
STU, in the end device. (See 4.3.6.)

3.1.17 Transfer: An ordered set of one or more
Blocks within a Scheduled Transfer. (See figure
3 and 4.2.)

3.1.18 upper-layer protocol (ULP): The
protocols above the service interface. These
could be implemented in hardware, software, or
they could be distributed between the two.

3.1.19 Virtual Connection: A bi-directional
logical connection used for Scheduled Transfers
between two end devices. A Virtual Connection
contains a logical Control Channel and a logical
Data Channel in each direction.

3.2 Editorial conventions

In this standard, certain terms that are proper
names of signals or similar terms are printed in
uppercase to avoid possible confusion with other
uses of the same words (e.g., DATA). Any
lowercase uses of these words have the normal
technical English meaning.

A number of conditions, sequence parameters,
events, states, or similar terms are printed with
the first letter of each word in uppercase and the
rest lowercase (e.g., Block, Transfer). Any
lowercase uses of these words have the normal
technical English meaning.

The word shall when used in this American
National standard, states a mandatory rule or
requirement. The word should when used in this
standard, states a recommendation.

3.2.1 Binary notation

working draft - HIPPI-ST Rev 0.4, 2/28/97

3

Binary notation is used to represent relatively
short fields. For example a two-bit field
containing the binary value of 10 is shown in
binary format as b'10'.

3.2.2 Hexadecimal notation

Hexadecimal notation is used to represent some
fields. For example a two-byte field containing a
binary value of b'11000100 00000011' is shown in
hexadecimal format as x'C403'.

3.3 Acronyms and other abbreviations

ACK acknowledge indication
CTS Clear_To_Send
ENDA END_ACK
HIPPI High-Performance Parallel Interface
K kilo (210 or 1024)
MAC Media Access Control
MPI Message Passing Interface
PT Port_Teardown
PTA Port_Teardown_ACK
PTC Port_Teardown_Complete
RQP Request_Port
RQPR Request_Port_Response
RS Request_State
RTR Request_To_Receive
RTS Request_To_Send
RTSR Request_To_Send_Response
SR State_Response
STU Scheduled Transfer Unit
ULP upper-layer protocol

4 System overview

This clause provides an overview of the structure,
concepts, and mechanisms used in Scheduled
Transfers. Figure 1 gives an example of
Scheduled Transfers being used to communicate
between device A and device B over some
physical media. Annex C describes the steps in a
typical Scheduled Transfer. Figure 2 shows
HIPPI-ST being used over different media.

4.1 Control Channels and Data Channels

Each Transfer has an Originating Source and
Final Destination. Each Originating Source and
Final Destination shall have a Control Channel,
and one or more Data Channels. The Originating
Source sends the payload data, and the Final
Destination receives the payload data.

Control Operations shall be exchanged over the
Control Channel. Scheduled Transfer Units
(STUs), i.e., data payload, shall be exchanged
over the Data Channel(s). The information
volume on the Data Channel(s) will be probably
may times the volume on the Control Channel,
hence the available bandwidths should be
balanced accordingly. For best performance, the
Control Channel should have low latency.

HIPPI-ST

Originating
Source

Final
Destination

Control Channel

Data Channel(s)

Control Channel

Data Channel(s)

HIPPI-ST

Originating
Source

Final
Destination

Control Channel

Data Channel(s)

Control Channel

Data Channel(s)

Lower
Layer(s)

Lower
Layer(s)

Interconnect
Network(s)

Device BDevice A

(May contain
intermediate

devices,
e.g., switches)

Figure 1 – System overview

working draft - HIPPI-ST Rev 0.4, 2/28/97

4

HIPPI-6400
end nodes with

HIPPI-ST

HIPPI-6400
switch(es)

Translators,
Routers, or

Bridges

HIPPI-800
end nodes with

HIPPI-ST

Ethernet, or
Gigabit Ethernet,
end nodes with

HIPPI-ST

Fibre Channel,
or other media
end nodes with

HIPPI-ST

HIPPI-800
switch(es)

Ethernet
fabric

Fibre Channel
or other
fabric

Figure 2 – HIPPI-ST over different media

4.2 System model

Multiple write (Put) or read (Get) functions may
be executed to move data units, called Transfers,
over a Virtual Connection. As shown in figure 3,
a Transfer is composed of one or more Blocks,
and Blocks are composed of one or more STUs.
The Scheduled Transfer protocol shall package
the Transfer in Blocks and STUs for delivery
using lower layer protocol(s) and media. An STU
shall be the data payload portion of a Data
Operation. A Data Operation shall consist of a
40-byte Schedule Header and an STU, together
totaling up to no more than 4 gigabytes (232

bytes). A Control Operation shall consist of a 40-
byte Schedule Header, and may contain an
additional 32 bytes of optional payload.

Figure 4 shows the model used on a Final
Destination for the Scheduled Transfers. The
model on the Originating Source would be
similar.

data payload (STU)

STUs

Blocks

Transfer

........

........

........

........

Schedule
Header

optional
payload

40 bytes 32-bytes

Control Operation

Data Operation

Schedule
Header

40 bytes
Total ≤ (232 – 64) bytes

(about 4 gigabytes)

Figure 3 – Information hierarchy

working draft - HIPPI-ST Rev 0.4, 2/28/97

5

Remote Port
Local Port
Local Key

Remote end Local end

Port

Key

Bufsize

STU-Size

Max Slots

Concatenate

Persistent

Port

Key

Bufsize

STU-Size

Max Slots

Concatenate

Persistent

Sync #

Current Slots

Sync #

Current Slots

T_id1

T_id2

T_id i

T_id1

T_id2

T_idi

Virtual Connection
Descriptor

Blocksize

B_num 0

B_num 1

B_num j

Transfer
Descriptor

Schedule Header
Queue

Bufx 0

Bufx 1

Bufx k

address 0

address 1

address n

Buffers
Buffer Descriptor

Table
Block

Descriptor

To other
Transfer
Descriptors

To other
Block
Descriptors

Bufx

To other
Buffer Descriptor
Tables

(Slots)

Op-timeout

Max_Retry

Figure 4 – Scheduled Transfer Final Destination model

working draft - HIPPI-ST Rev 0.4, 2/28/97

6

As Control Operations and Data Operations are
received, the Schedule Header of each is placed
in the Schedule Header queue for execution.
State information about the number of empty
Slots in the queue is available to the other end so
that it can avoid overrunning the queue.

The Virtual Connection Descriptor contains:

– static parameters defining the Virtual
Connection from the view of both the remote
end device and local end device (the top
portion of the Virtual Connection Descriptor box
in figure 4);

– current state information about the number of
empty "Slots" for Operation Schedule Headers,
and Operation Re-try parameters;

– identifiers for each of the Virtual Connection's
Transfers.

A Transfer Descriptor, for each Transfer, contains
the data size (in bytes), and includes pointers to
Block Descriptors. The Block Descriptors (one
for each Block of a Transfer) identifies the set of
contiguous Buffer Index (Bufx) values assigned
to the Block. And finally, the Buffer Descriptor
Table provides a base memory address for each
Bufx.

In an effort to achieve maximum transfer rates
and efficiency, the receiver's job is made as easy
as possible, even at the expense of the transmit
side. It is expected that after validating an
Operation in the Final Destination, only a single
lookup will be needed to derive the absolute
memory address and correctly place the data.

4.3 Virtual Connections

Scheduled Transfers between an Originating
Source and Final Destination are pre-arranged to
decrease computational overhead during the
Transfer and allocate buffers at each end device.
The bi-directional path between the end devices
is called a Virtual Connection. A Virtual
Connection shall consist of an Originating Source
and Final Destination in each end device.

Once the Final Destination has indicated its
ability to accept the STUs, the Virtual Connection
should not become congested. In essence, the
Final Destination smoothly controls the flow. For

comparison, without pre-arranging the buffers the
Originating Source would blindly send data into
the interconnection network where it might have
to wait for buffers to be assigned in the Final
Destination. On the down-side, Scheduled
Transfers require additional Control Operations,
and round-trip latency. Once established, a
Virtual Connection may be used to carry multiple
Transfers. This Scheduled Transfer protocol
does not handle network resource reservations.

4.3.1 Sequences and Operations

During Virtual Connection setup, the end devices
shall exchange parameters specific to each
device. These parameters, shown in the upper
portion of the Virtual Connection Descriptor box
in figure 4 and detailed below, include values for:

– Port numbers (e.g., a Port dedicated to
HIPPI-FP or IP traffic);

– Keys (used for authenticating Operations);

– native buffer sizes (Bufsize) for determining
Final Destination buffer tiling;

– maximum STU size;

– maximum number of outstanding Operations
(Slots) to keep from overflowing the command
queues;

– whether or not they support Concatenate and
Persistent modes.

The parameters assigned during setup shall apply
for the life of the Virtual Connection. Once
established, the Virtual Connection is accessed
as shown in figure 4 by the tuple "remote Port",
"local Port", and "local Key". The Control
Operations defined for Virtual Connection setup
are:

– Request_Port (See 7.1.)

– Request_Port_Response (See 7.2.)

The Control Operations defined for Virtual
Connection teardown are:

– Port_Teardown (See 7.3.)

– Port_Teardown_ACK (See 7.4.)

– Port_Teardown_Complete (See 7.5.)

working draft - HIPPI-ST Rev 0.4, 2/28/97

7

4.3.2 Ports

Ports identify upper-layer entities within an end
device. The Port values shall be assigned by the
local end device, and have no meaning on the
other end device. For example, when end device
A requests a Virtual Connection to end device B,
A shall select the value for A-Port, and shall send
it to B in the Request_Port Operation. B shall
store the A-Port value, and shall return it to A in
every Operation over this Virtual Connection.
Likewise, B shall select the value for B-Port.

An exception is the "well-known Port", i.e., Port
x'0000'. In this case, a request sent to the "well-
known Port" shall result in the receiving end
device assigning a specific local Port value based
on the EtherType parameter. EtherType
parameter values shall be as assigned in the
current "Assigned Numbers" RFC, e.g., RFC
17001).

4.3.3 Keys

Like the Ports, each end device shall select its
own 32-bit Key value for use on the Virtual
Connection. For example, when end device A
requests a Virtual Connection to end device B, A
shall select the value for A-Key, and shall send it
to B in the Request_Port Operation. B shall store
the A-Key value, and shall return it to A in every
Operation over this Virtual Connection. The A-
Key value has no meaning in B, it is only
significant in A where it shall be used to validate
that the Operation presented is really associated
with this Virtual Connection. Likewise, B shall
select the value for B-Key. Keys are similar in
nature to passwords; if the Key doesn't match,
then the Operation shall not be executed.

4.3.4 Buffer size (Bufsize)

Each end shall define the buffer size, in bytes,
that it wants to use. Buffer sizes may be the
same as host page sizes. It is most efficient
when the buffer sizes are the same on both ends,
but differing buffer sizes are supported (see
annex C). The buffer sizes shall be ≥ 256 bytes
and shall be an integral power of two.

4.3.5 Max-STU size

The Max-STU size, exchanged during Virtual
Connection setup, establishes the maximum data
payload size of an STU. Each end device
declares its desired Max-STU size which it is
prepared to receive, which must be no larger than
its Bufsize. Intermediate devices with smaller
buffer sizes may lower this value. Note that the
Max-STU size in each direction may be different.

Additionally, the Max-STU size shall be ≥ 256
bytes and an integral power of two. The Max-
STU size restricts an Originating Source from
sending STU’s with a data payload larger than the
Max-STU size. (See 4.4.9.)

4.3.6 Slots and Sync parameter

The term Slots denotes memory at an end device
reserved for storing the Schedule Headers of
incoming Operations. Each Operation arriving at
an end device consumes one Slot, except for
DATA Operations which consume a Slot only if a
Notify or Interrupt flag is set. An Originating
Source shall control the flow of Operations by
sending no more Operations than there are Slots
available at the other end. Any Operations that
are sent in excess of the number of available
Slots may be discarded by the receiver (see
9.4.2). The end device supplying the Slots
information shall advertise at least one too few
Slots, i.e., keeping one in reserve for an END or
State_Response Operation to prevent deadlocks.

An end device learns the initial number of Slots
available (Slots value) at the remote end device
during the Virtual Connection setup (see 7.1 and
7.2). Later, an end device obtains the current
Slots value by reading the Slots parameter in a
received State_Response. An end device may
solicit a State_Response from the remote end by
either of two methods: by setting the Send_State
flag in the Schedule Header of a DATA
Operation, or by sending a Request_State
Operation. A received Slots value of
x'FFFFFFFF' indicates that the remote end does
not implement Slots accounting.

1) RFC (Request For Comment) documents are working standards documents from the TCP/IP internetworking
community. Copies of these documents are available from numerous electronic sources (e.g., http://www.ietf.org)
or by writing to IETF Secretariat, c/o Corporation for National Research Initiatives, 1895 Preston White Drive, Suite
100 Reston, VA 20191-5434, USA.

working draft - HIPPI-ST Rev 0.4, 2/28/97

8

NOTE – Slots flow control may not be needed when
the maximum number of Control Operations is
otherwise bounded, or where dropped Operations
are acceptable.

The received Slots value is a snapshot of the
number of Slots available at the remote end
device when the remote end device received the
soliciting Operation. The local end device may
continue to send Operations after soliciting a
State_Response, and may also solicit multiple
responses before receiving a reply. The lower
bound on the number of available Slots at the
remote end device is determined by the local end
device, thus adjusting its vision of the number of
Slots to account for outstanding Operations. The
adjustment consists of subtracting, from the
number of Slots indicated in the received
State_Response Operation, the number of Slot-
consuming Operations sent by the local end
device after a State_Response solicitation.

The local end device can use the Sync parameter
to identify State_Response messages when there
are multiple outstanding solicitations. The Sync
parameter in a DATA or Request_State shall be
copied and returned by the remote end device in
the corresponding State_Response. This Sync
parameter may be used by the local end device
to mark the request, and thus identify the
State_Response with a particular solicitation.
The Sync values are locally determined.

4.3.7 Concatenate

The Concatenate flag (see 6.2) controls the
addressing mode for the Bufx and Offset
parameters.

– When Concatenate = 0, Bufx shall specify a
Buffer Index for placing the data in the Final
Destination.

– When Concatenate = 1, the Bufx and Offset
fields shall be concatenated into a single 64-bit
address, with Bufx containing the most-
significant bytes of the address (see 4.4.7).

The value of the Concatenate flag shall be
consistent for an entire Transfer, i.e., switching
back and forth between 64-bit addresses and
Buffer Indexes within a Transfer is not allowed
(see 4.4.7).

Concatenate is only usable between hosts that
mutually agree. Agreement is reached by
controlling the Concatenate flag bit during the
Virtual Connection setup (see 7.1 and 7.2).

4.3.8 Source_Concatenate

The Source_Concatenate flag (see 6.2) controls
the addressing mode for the OS_Bufx
(Originating Source Buffer index) and OS_Offset
parameters. Note that OS_Bufx and OS_Offset
control the data addressing on the Originating
Source, and are only used in the
Request_To_Receive Operation.

– When Source_Concatenate = 0, OS_Bufx
shall specify a Buffer Index pointing to the data
in the Originating Source (see 4.4.8).

– When Source_Concatenate = 1, the OS_Bufx
and OS_Offset fields shall be concatenated
into a single 64-bit address, with OS_Bufx
containing the most-significant bytes of the
address (see 4.4.8).

Source_Concatenate is only usable between
hosts that mutually agree. Agreement is reached
by controlling the Source_Concatenate flag bit
during the Virtual Connection setup (see 7.1 and
7.2).

4.3.9 Persistent

The Persistent flag (see 6.2) controls buffer
retention in the Final Destination for this Virtual
Connection.

– When Persistent = 1, the memory in the Final
Destination allocated for this Scheduled
Transfer shall be retained for multiple transfers,
and not released until a Port_Teardown or an
END Operation occurs. Note that Persistent =
1 bypasses the flow control provided by
Clear_To_Send, i.e., a DATA Operation may
be sent at any time whether or not a
Clear_To_Send Operation has been received.
Sending information to a Frame Buffer is an
example of where Persistent might be used.

– When Persistent = 0, the memory for a Block
may be allocated for other uses after the Block
is complete. All DATA Operations must be
enabled by a Clear_To_Send or
Request_To_Receive Operation.

working draft - HIPPI-ST Rev 0.4, 2/28/97

9

Persistent is only usable between hosts that
mutually agree. Agreement is reached by
controlling the Persistent flag bit during the
Virtual Connection setup (see 7.1 and 7.2).

4.4 Data movement

4.4.1 Sequences and Operations

A write data sequence (which may be initiated by
either end of the Virtual Connection) shall be set
up by the end devices exchanging transfer
identifiers (T_id's) specific to each device, and
length parameters. The Control Operations
setting up a write data sequence are:

– Request_To_Send (See 8.1.)

– RTS_Response (See 8.2.)

A read data sequence, which moves the Transfer
as a single Block, requires that both ends have
previously allocated resources for the entire read
sequence with a Request_To_Send. The Control
Operation setting up a read data sequence is:

– Request_To_Receive (See 8.3.)

The Final Destination controls the data flow with:

– Clear_To_Send (See 8.4.)

Data payload for the read and write data
movements are carried in STUs. STUs are sent
with:

– DATA (See 8.5.)

State information can be requested in a DATA
Operation, or with a Request_State Control
Operation.

– Request_State (See 8.6.)

– State_Response (See 8.7.)

The Control Operations below are used to abort a
Transfer. Unlimited size Transfers shall use this
method to signal the end of the Transfer.

– END (See 8.8.)

– END_ACK (See 8.9.)

4.4.2 Transfer identifiers (R_id and S_id)

Like the Ports and Keys, each end device shall
also select its own non-zero 16-bit Transfer
identifier (T_id) value for a data movement on
the Virtual Connection. For example, when end
device G requests to write to end device H, G
shall select the value for its T_id, and shall send
it to H in the Request_To_Send Operation. H
shall store G's T_id value, and shall return it to H
in every Operation concerning this Transfer.
Likewise, H shall select its T_id value and send it
to G in a Request_To_Send_Response, or
Clear_To_Send Operation. For each Operation,
the sender shall put its T_id in the S_id field, and
the receiver's T_id value in the R_id field.

NOTE – The Virtual Connection is symmetrical;
either end device may initiate a data movement.
For example, G could be end device A that initiated
the Virtual Connection setup, or it could be end
device B. Different names were used for clarity.

4.4.3 Transfer length (T_len)

The 32-bit Transfer length parameter (T_len)
specifies the total number of data payload bytes
in the Transfer. T_len does not include the
Schedule Header, or any lower-layer headers.
T_len = x'00000000' shall mean an unlimited size
Transfer. An unlimited size Transfer is
terminated by an END Operation (see 8.8).

4.4.4 Blocks

Scheduled Transfer flow control, striping,
acknowledgments, and resource allocation are all
done on a Block basis. Block numbers (B_num)
shall be numbered starting at zero, and shall
increment by one for each following Block.

Blocks comprising a Transfer shall be enabled for
transmission in sequential order unless both the
Originating Source and Final Destination
indicated Out_of_Order capability during the
Virtual Connection setup. Note that
Out_of_Order is necessary for retransmission to
correct flawed Blocks.

State_Response Operations indicate the highest
numbered Block received correctly by the Final
Destination. State_Response Operations can be
requested by setting the Send_State flag bit in

working draft - HIPPI-ST Rev 0.4, 2/28/97

10

DATA Operations, or by sending Request_State
Operations. In addition, Request_State
Operations can ask if a particular Block was
received correctly. Use of these mechanisms
allows the Originating Source to verify correct
reception, and to identify flawed Blocks for
potential retransmission.

4.4.5 Block size

The Block size for a Transfer is established when
a Transfer is initiated, i.e., with a
Request_To_Send_Response or Clear_To_Send
Operation (see 8.2 and 8.4). Block size is
expressed as a power of two, i.e., 2x where 8 ≤ x
≤ 32. All of the Blocks of a Transfer shall be full
size, except for the first and/or last Block of a
Transfer which can be smaller (the first Block will
be smaller by the initial Offset value, and the last
Block will be whatever completes the Transfer).

4.4.6 STUs

The STUs of a Block shall be transmitted in
order. STU numbers (S_count) shall start with
(number of STUs in this Block – 1) and
decrement by one for each following STU. The
last STU of a Block shall have S_count = 0. No
STU shall extend past a Final Destination's buffer
region boundary, Block size boundary, or
Transfer boundary.

4.4.7 Bufx and Offset

Bufx contains either a Buffer Index, or the high-
order portion of a 64-bit address, in the Final
Destination. Selection between these two is
controlled by the Concatenate flag (see 4.3.7 and
6.2). If more than one Buffer Index is required for
a Block, i.e., buffer size (Bufsize) is less than
Block size, then the Bufx parameter in the
Clear_To_Send Operation shall specify the initial
Bufx, and any additional Bufx values shall be
sequential.

Offset may be used to start at other than the first
byte of a Final Destination's buffer. For the first
STU of a Block, the Offset value shall be the
same as received in the Clear_To_Send for the
Block. Subsequent STUs of the Block shall
adjust the Bufx and Offset values based on the

Final Destination's buffer size and the STU size
used by the Originating Source.

NOTE – By providing the initial Offset value in all
Clear_To_Send Operations, the Originating Source,
and Final Destination, can compute the starting
address without knowing the size of the first Block.
For example, if the Clear_To_Send for Block 0
arrives after Clear_To_Sends for other Blocks, e.g.,
as a result of striping.

4.4.8 OS_Bufx and OS_Offset

OS_Bufx specifies either a Buffer Index, or the
high-order portion of a 64-bit address, in the
Originating Source during a Request_To_Receive
Operation. Selection between these two is
controlled by the Source_Concatenate flag (see
4.3.8 and 6.2). If more than one Buffer Index is
required for a Block, i.e., buffer size < Block size,
then the OS_Bufx parameter shall specify the
initial Bufx, and any additional Bufx values shall
be sequential.

OS_Offset may be used to start at other than the
first byte of a Source buffer. Note that OS_Bufx
and OS_Offset are only used with
Request_To_Receive Operations, and Request
_To_Receive Operations only specify one Block.

4.4.9 Packing examples

Figure 5 shows three possibilities for packing the
same Transfer into a receiver's buffers. All three
examples show a group of seven of the receiver's
buffers on the top line. Each buffer is pointed to
by a Bufx, and the data in the first buffer starts at
an Offset value. The Transfer is the shaded bar,
with transmission going from left to right. The
Block boundaries are shown above the shaded
bar, and the resulting STU boundaries are shown
below the shaded bar.

Example (a), at the top, shows the case where
the buffers and Blocks are the same size. Notice
that the first Block is smaller than the other
Blocks by the Offset value. No Offset is required
for the other Blocks. The last Block of the
Transfer is also smaller, i.e., the Transfer did not
end on a Block boundary. While the STU
boundaries lined up nicely, the sender could have
used multiple STUs, but the STUs cannot be
larger than Max-STU.

working draft - HIPPI-ST Rev 0.4, 2/28/97

11

(a) Receiver's buffers

Block boundaries

Transfer

Resulting STU boundaries

(b) Receiver's buffers

Block boundaries

Transfer

Resulting STU boundaries

(c) Receiver's buffers

Block boundaries

Transfer

Resulting STU boundaries

Offset

Offset

Offset

Figure 5 – Data packing examples

Example (b) shows multiple Blocks per receiver
buffer. The Blocks that do not start on a buffer
boundary would use the Offset parameter to
position the data.

The last example shows the Block size covering
two of the receiver's buffers.

In summary, individual STU size is ≤ Max-STU
size, is ≤ Block size, is ≤ Bufsize, and STUs
cannot cross Block, buffer, or Transfer
boundaries.

4.5 Operations management

4.5.1 Flow control

Data flow control is achieved with
Clear_To_Send and Request_To_Receive
Operations; each one sent by the Final
Destination gives the Originating Source
permission to send one Block. This mechanism
is over-ridden when Persistent = 1; here DATA
Operations may be sent without having first
received Clear_To_Send Operations.

Operation flow control is achieved by an
Operation's sender not overrunning the Slots
value (see 4.3.6).

working draft - HIPPI-ST Rev 0.4, 2/28/97

12

4.5.2 Status Operations

Request_State (see 8.6) and State_Response
(see 8.7) Operations are used to request and
supply status information about the state of the
remote end device. They can be used to see
which Blocks have been received correctly, and
the number of empty Slots available. The Sync
parameter (see 4.3.6) is used to provide a
common reference point for the local and remote
end devices.

4.5.3 Rejected Operations

If the receiving end device is unable to execute
an Operation, then the receiving device shall set
the Reject flag bit = 1 in the response. Table 1
shows the response (with Reject = 1) when an
Operation is rejected. The recovery actions
taken when an Operation is rejected are beyond
the scope of this standard.

Table 1 – Response to a rejected Operation

Rejected

Operation

Response (w/ Reject = 1)

Request_Port Request_Port_Response

Request_To_Send Request_To_Send_Response

Request_To_Receive State_Response

4.5.4 Lost Operations

Errors other than syntactic errors are manifested
as missing Operations, occurring when the
underlying physical media discards or damages a
transmission. Each Scheduled Transfer
Operation is defined as part of a two-way
handshake or a three-way handshake. Thus, for
each command Operation there is a
corresponding response Operation, and for some
response Operations there is also a
corresponding completion Operation.

Each Operation that expects a response is
guarded with a timeout whose value is referred
to as Op-timeout (see 9.1). An Operation shall
be re-tried up to Max_Retry times (see 9.1) if the
sending end device does not receive the
expected response (see 9.2 and table 5).

Data transmissions (i.e., DATA Operations), are
an exception to this timeout mechanism, and are
referred to the ULP for resolution (see 9.2).

4.5.5 Interrupts

An Interrupt causes a signal, to be delivered to
the receiving end device ULP. An Interrupt can
be requested with any Operation by setting
Interrupt = 1.

working draft - HIPPI-ST Rev 0.4, 2/28/97

13

5 Service interface

This clause specifies the services provided by
HIPPI-ST. The intent is to allow ULPs to operate
correctly with this HIPPI-ST. How many of the
services described herein are chosen for a given
implementation is up to that implementor;
however, a set of HIPPI-ST services must be
supplied sufficient to satisfy the ULP(s) being
used. The services as defined herein do not
imply any particular implementation, or any
interface.

Figure 6 shows the relationship of the HIPPI-ST
interfaces.

5.1 Service primitives

The primitives, in the context of the state tran-
sitions in clause 5, are declared required or
optional. Additionally, parameters are either
required, conditional, or optional. All of the
primitives and parameters are considered as
required except where explicitly stated otherwise.

HIPPI-ST service primitives are of four types.

– Request primitives are issued by a service
user to initiate a service provided by the HIPPI-
ST. In this standard, a second Request primi-
tive of the same name shall not be issued until
the Confirm for the first request is received.

–Confirm primitives are issued by the HIPPI-ST
to acknowledge a Request.

– Indicate primitives are issued by the HIPPI-ST
to notify the service user of a local event. This
primitive is similar in nature to an unsolicited
interrupt. Note that the local event may have
been caused by a service Request. In this
standard, a second Indicate primitive of the
same name shall not be issued until the
Response for the first Indicate is received.

– Response primitives are issued by a service
user to acknowledge an Indicate.

HIPPI-6400

Upper-layer
protocols

Data transfer
service interface

(64_...)

Station
management

(SMT)
Management

service interface
(64SM_...)

Figure 6 – HIPPI-ST service interface

5.2 Sequences of primitives

The order of execution of service primitives is not
arbitrary. Logical and time sequence
relationships exist for all described service primi-
tives. Time sequence diagrams are used to illus-
trate a valid sequence. Other valid sequences
may exist. The sequence of events between peer
users across the user/provider interface is illus-
trated. In the time sequence diagrams the HIPPI-
ST users are depicted on either side of the
vertical bars while the HIPPI-ST acts as the
service provider.

NOTE - The intent is to flesh out the service primitives
similar to what is in HIPPI-PH today.

Service interface considerations -

(These are notes that have been collected during the
document reviews, and should be considered when the
service interface is written.)

Should there be a priority, or time-to-live, for
individual Transfers? On a per connection basis?

Pass the full ST header to/from the ULP.

Service the slots in order of arrival, i.e., FIFO.

Interrupts are passed independent of the Slots,
i.e., whenever and Interrupt is put in the Slots
queue.

working draft - HIPPI-ST Rev 0.4, 2/28/97

14

6 Schedule Header

The Schedule Header is shown in figure 7 as a
group of 32-bit words. The Schedule Header
shall be used with all Scheduled Transfer
Operations. The usage for each parameter is
listed below and summarized in tables 2 and 3.

Bytes

Op Flags S_count 00-03

R_Port S_Port 04-07

Key 08-11

R_id S_id 12-15

Bufx 16-19

Offset 20-23

T_len 24-27

B_num 28-31

OS_Bufx 32-35

OS_Offset 36-39

Figure 7 – Schedule Header contents

6.1 Schedule Header parameters

The Schedule Header parameters shall be as
follows. If an Operation does not use a particular
Schedule Header parameter, then that parameter
shall be transmitted as zeros.

Op (5 bits, high-order 5 bits of byte 00) – The
Scheduled Transfer Operation. See tables 2
and 3 for a summary of Op values.
Unspecified Op values are reserved.

Flags (11 bits, low-order 3 bits of byte 00, and
all of byte 01) – Control flags (see 6.2).

S_count (16 bits, bytes 02-03):

– In Request_Port, Request_Port
_Response, and State_Response
Operations: the number of available Slots
(see 4.3.6);

– In Request_To_Send_Response and
Clear_To_Send Operations: the Blocksize
parameter (see 4.4.5);

– In DATA Operations: the STU counter,
counting down to zero, (see 4.4.6).

R_Port (16 bits, bytes 04-05) – The receiver's
logical Port for this Operation (see 4.3.2).

S_Port (16 bits, bytes 06-07) – The sender's
logical Port for this Operation (see 4.3.2).

Key (32 bits, bytes 08-11) – Virtual Connection
identifier. Generated independently by each
end during the Virtual Connection setup. (See
4.3.3.)

R_id (16 bits, bytes 12-13) – The receiver's
Transfer identifier for this Operation (see 4.4.2).

S_id (16 bits, bytes 14-15) – The sender's
Transfer identifier for this Operation (see 4.4.2).

Bufx (32 bits, bytes 16-19):

– In Request_Port and Request_Port_Re-
sponse Operations: the maximum buffer
size (Bufsize) supported by the end device
(see 4.3.4);

– In Request_To_Receive, Clear_To_Send,
and DATA Operations: the Buffer Index at
the Final Destination, or the high-order
portion of a 64-bit concatenated address
(see 4.4.7).

Offset (32 bits, bytes 20-23):

– In Request_Port and Request_Port_Re-
sponse Operations: the sender's Key value
(see 4.3.3).

– In Request_To_Receive, Clear_To_Send,
and DATA Operations: the Final
Destination's Offset within a Bufx, or the
low-order portion of a 64-bit concatenated
address (see 4.4.7).

– In State_Response Operations: the Block
number of the highest number contiguous
Block received correctly (see 4.4.4).

T_len (32 bits, bytes 24-27):

– In Request_Port and Request_Port_Re-
sponse Operations: the Max-STU size (see
4.3.5).

– In Request_To_Send, Request_To_Send
_Response, and Request_To_Receive
Operations: the length, in bytes, of the
Transfer data (see 4.4.3).

– In DATA, State_Request, and
State_Response Operations: the Sync
parameter (see 4.3.6).

working draft - HIPPI-ST Rev 0.4, 2/28/97

15

B_num (32 bits, bytes 28-31):

– In Request_Port Operations: the
EtherType parameter (see 4.3.2).

– In Clear_To_Send, and DATA Operations:
the Block number being requested or
transmitted (see 4.4.4).

– In Request_State and State_Response
Operations: the Block number being queried
or responded to (see 4.4.4, 8.6, and 8.7).

OS_Bufx (32 bits, bytes 32-35):

– In Request_To_Receive Operations: the
Buffer Index at the Originating Source, or
the high-order portion of a 64-bit
concatenated address (see 4.4.8).

– In DATA Operations: Opaque field, e.g.,
for passing ULP parameters.

OS_Offset (32 bits, bytes 36-39):

– In Request_To_Receive Operations: the
Originating Source's Offset within a Bufx, or
the low-order portion of a 64-bit
concatenated address (see 4.4.8).

– In Clear_To_Send Operations: the Final
Destination's initial Offset value (see 4.4.7).

– In DATA Operations: Opaque field, e.g.,
for passing ULP parameters.

6.2 Scheduled Transfer flags

Figure 8 summarizes the flags, and shows their
relative position. The flag functions are detailed
below for the case when the bit = 1.

Out_of_Order (b'1xxxxxxxxxx') = The end
device is able to send and receive Blocks in
any order.

Notify (b'x1xxxxxxxxx') = Requests that a
DATA Operation's Schedule Header, in which
the Notify flag is set, be delivered to the
appropriate upper-layer entity after delivery of
the data payload to the same entity. Non-DATA
Operations Schedule Headers are to be
delivered in the same manner; i.e., the Notify
bit is implied whether it is set or not. The
delivery action is selectable by the Originating
Source only for DATA Operations. If the Notify
bit is not set in a DATA Operation's Schedule
Header, only the data payload will be delivered.

DO

Out_of_Order
Notify
Interrupt
Send_State
Concatenate
Source_Concatenate
Persistent
First
Reject
Data Channel assignment

C UN I S P F R

Byte 01Byte 0

Op bits

Figure 8 – Flags summary

Interrupt (b'xx1xxxxxxxx') = Requests exactly
the same actions as the Notify flag (see above)
on both DATA and non-DATA Operations with
the additional requirement that a signal be
delivered to the upper-layer entity (see 4.5.5).

NOTE 1 – The Notify and Interrupt flags together
provide for three delivery modes for DATA
Operations: silent, polled, or interrupt-driven. If
both flags are zero, the data payloads are
delivered silently. If Notify is set, then the upper-
layer entity is informed by the same means used
for all other Schedule Headers. This mode is
suitable for polled interfaces. If Interrupt is set,
then a signal is delivered.

Send_State (b'xxx1xxxxxxx') = Requests that
the Final Destination respond with a
State_Response upon successful receipt of this
STU by the higher-layer protocol. For
Send_State to be valid, either the Interrupt or
Notify flag must also = 1.

Concatenate (b'xxxx1xxxxxx') = Use Bufx as
the high-order portion of a 64-bit Final
Destination address rather than as a Buffer
Index (see 4.3.7).

Source_Concatenate (b'xxxxx1xxxxx') = Use
OS_Bufx as the high-order portion of a 64-bit
Originating Source address rather than as a
Buffer Index (see 4.3.8).

Persistent (b'xxxxxx1xxxx') = Retain the Final
Destination's buffers (see 4.3.9).

First (b'xxxxxxx1xxx') = The first STU of a
Block.

working draft - HIPPI-ST Rev 0.4, 2/28/97

16

Reject (b'xxxxxxxx1xx') = The request (i.e.,
Request_Port, Request_To_Send, or
Request_To_Receive) has been rejected.

Data Channel assignment: The Data Channel
to be used to carry DATA Operations. The
Data Channel value is assigned in a
Request_To_Send Operation, and is copied in
each DATA Operation.

b'xxxxxxxxx01' = Data Channel 1
b'xxxxxxxxx10' = Data Channel 2
b'xxxxxxxxx11' = Data Channel 3

The maximum STU size sent on Data Channels
1 and 2 shall be (217 – 64) bytes, i.e.,
approximately 128 Kbytes. The maximum STU
size sent on Data Channel 3 shall be (232 – 64)
bytes, i.e., approximately 4 gigabytes.

NOTE 2 – The maximums were sized to
accommodate the Schedule Header and 24 bytes
of lower-layer protocol header.

7 Virtual Connection management

In this clause, a Virtual Connection is set up
between two Ports (see 4.3.2), called the A-Port
and B-Port. The device that initiates the Virtual
Connection is called device A, and the device at
the other end is called device B.

In addition to the Port values, each Port shall
assign, and associate, a Key value (A-Key and B-
Key) with the Virtual Connection (see 4.3.3).
Other parameters exchanged during the Virtual
Connection setup include Buffer sizes (A-Bufsize
and B-Bufsize, see 4.3.4), maximum STU sizes
(Max-STU, see 4.3.5), and the number of
available Slots (A-Slots and B-Slots, see 4.3.6).
The end devices also inform each other their
capability to support Concatenate (see 4.3.7),
Source_Concatenate (see 4.3.8), Persistent (see
4.3.9), and out-of-order Block delivery (see
4.4.4).

The Operations used to set up and tear down
Virtual Connections are detailed below, and
summarized in table 2. Only the fields used in
each Operation are listed, all of the other
Schedule Header fields shall be transmitted as
zeros. While a particular field usually carries the
parameter of the same name, fields sometimes
carry other parameter values. In the Operations

below, the specific parameter used in the
Operation is listed first, and if is not carried in the
field of the same name then the field name is
included in square brackets.

7.1 Request_Port

Request_Port shall be used to setup a Virtual
Connection between end device A and end
device B.

Semantics – Request_Port (
Op,
Flags,
A-Slots [S_count],
B-Port [R_Port],
A-Port [S_Port],
A-Bufsize [Bufx],
A-Key [Offset],
A-Max-STU [T_len],
EtherType [B_num])

Op = x'01'

Flags (see 6.2) shall specify the Out_of_Order,
Source_Concatenate, Concatenate, and
Persistent flags. A value of 1 shall indicate that
A supports that feature. The appropriate value
for the Interrupt flag shall also be carried (see
4.5.5).

A-Slots, carried in the S_count field, shall
specify the maximum number of Slots allocated
in A for this Virtual Connection (see 4.3.6).

B-Port, carried in the R_Port field, shall specify
B's logical Port value for this Virtual
Connection. B-Port may be either the well-
known Port (B will assign the Port value), or a
peer Port, that provides the service (see 4.3.2).

A-Port, carried in the S_Port field, shall specify
A's logical Port value for this Virtual Connection
(see 4.3.2).

A-Bufsize, carried in the Bufx field, shall
specify A's buffer size (see 4.3.4).

A-Key, carried in the Offset field, shall specify
A's Key value for this Virtual Connection (see
4.3.3).

A-Max-STU, carried in the T_len field, shall be
≤ A-Bufsize when sent by A (see 4.3.5). The
A-Max-STU value received by B shall be used
by B as the maximum size of STUs (Max-STU)
to be sent from B to A on this Virtual

working draft - HIPPI-ST Rev 0.4, 2/28/97

17

Connection. (See 4.3.5.)

EtherType, carried in the B_num field, shall be
a value that characterizes the data payloads
that will be exchanged on this Virtual
Connection (see 4.3.2).

Issued – By device A.

Effect – If it accepts the request, then end device
B shall establish a Virtual Connection and shall
reply with a Request_Port_Response Operation.
If rejected, then end device B shall respond with
Reject = 1 in the Request_Port_Response (see
4.5.3).

7.2 Request_Port_Response

Request_Port_Response shall inform end device
A whether the Virtual Connection was accepted
or not. If accepted, the parameters associated
with this Virtual Connection are passed to A.

Semantics – Request_Port_Response (
Op,
Flags,
B-Slots [S_count],
A-Port [R_Port],
B-Port [S_Port],
A-Key [Key],
B-Bufsize [Bufx],
B-Key [Offset],
B-Max-STU [T_len])

Op = x'02'

Flags (see 6.2) shall specify the Out_of_Order,
Source_Concatenate, Concatenate, and
Persistent flags. A value of 1 shall indicate that
B supports that feature. The appropriate value
for the Reject and Interrupt flags shall also be
carried (see 4.5.3 and 4.5.5).

B-Slots, carried in the S_count field, shall
specify the maximum number of Slots allocated
in B for this Virtual Connection (see 4.3.6).

A-Port, carried in the R_Port field, shall be the
same as the A-Port value in the Request_Port
Operation (see 4.3.2).

B-Port, carried in the S_Port field, shall specify
B's logical Port value for this Virtual Connection
(see 4.3.2).

A-Key, carried in the Key field, shall be the Key

value assigned by A in the Request_Port
Operation (see 4.3.3).

B-Bufsize, carried in the Bufx field, shall
specify B's buffer size (see 4.3.4).

B-Key, carried in the Offset field, shall specify
B's Key value assigned for this Virtual
Connection (see 4.3.3).

B-Max-STU, carried in the T_len field, shall be
≤ B-Bufsize when sent by B (see 4.3.5). The
B-Max-Size value received by A shall be used
by A as the maximum size of STUs (Max-STU)
to be sent from A to B on this Virtual
Connection. (See 4.3.5.)

Issued – By B in response to a Request_Port.

Effect – End device A has been assigned a
logical Port on end device B. The Ports, Keys,
buffer sizes, maximum STU size, and maximum
number of Slots have been exchanged, and a
Virtual Connection has been established. Note
that the Virtual Connection is bi-directional in that
either A or B may initiate a Scheduled Transfer.
Multiple Scheduled Transfers may occur over a
single Virtual Connection, and the Scheduled
Transfers can be either writes or reads.

7.3 Port_Teardown

Port_Teardown shall terminate the Virtual
Connection, and may be issued by either end
device A or end device B. The Port_Teardown
sequence uses a three-way handshake consisting
of Port_Teardown, Port_Teardown_ACK, and
Port_Teardown_Complete.

Open Issue – A state table describing the 3-way
handshake will be included in a Normative annex.

Semantics – Port_Teardown (
Op,
Flags,
R_Port,
S_Port,
Key)

Op = x'03'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_Port shall contain the value associated with

working draft - HIPPI-ST Rev 0.4, 2/28/97

18

the receiver of the Operation, e.g., R_Port = B-
Port when the Port_Teardown is issued by A
(see 4.3.2).

S_Port shall contain the value associated with
the sender of the Operation, e.g., S_Port = A-
Port when the Port_Teardown is issued by A
(see 4.3.2).

Key shall contain the Key value associated with
the receiver of the Operation, e.g., Key = B-
Key when the Port_Teardown is issued by A
(see 4.3.3).

Issued – By either side, i.e., end device A or end
device B, of the Virtual Connection. The sender
should only issue a Port_Teardown when the
Transfers are complete, or appear to be stalled.

Effect – The receiver should release any buffers
associated with this Virtual Connection, but shall
retain the Port and Key values for use in further
Port_Teardown Operations. The receiver shall
also respond with a Port_Teardown_ACK.

7.4 Port_Teardown_ACK

Port_Teardown_ACK shall be used to
acknowledge receipt of a Port_Teardown.

Semantics – Port_Teardown_ACK (
Op,
Flags,
R_Port,
S_Port,
Key)

Op = x'04'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_Port shall contain the value associated with
the receiver of the Operation, e.g., R_Port = B-
Port when the Port_Teardown_ACK is issued
by A (see 4.3.2).

S_Port shall contain the value associated with
the sender of the Operation, e.g., S_Port = A-
Port when the Port_Teardown_ACK is issued
by A (see 4.3.2).

Key shall contain the Key value associated with
the receiver of the Operation, e.g., Key = B-
Key when the Port_Teardown_ACK is issued by
A (see 4.3.3).

Issued – By the receiver of a Port_Teardown
Operation after releasing this Virtual Connection's
buffers.

Effect – The receiver should release any buffers
associated with this Virtual Connection, but shall
retain the Port and Key values for use in further
Port_Teardown Operations. The receiver shall
also respond with a Port_Teardown_Complete.

7.5 Port_Teardown_Complete

Port_Teardown_Complete shall be used to
complete a three-way handshake, acknowledging
that the actions associated with a Port_Teardown
have been completed.

Semantics – Port_Teardown_Complete (
Op,
Flags,
R_Port,
S_Port,
Key)

Op = x'05'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_Port shall contain the value associated with
the receiver of the Operation, e.g., R_Port = B-
Port when the Port_Teardown_Complete is
issued by A (see 4.3.2).

S_Port shall contain the value associated with
the sender of the Operation, e.g., S_Port = A-
Port when the Port_Teardown_Complete is
issued by A (see 4.3.2).

Key shall contain the Key value associated with
the receiver of the Operation, e.g., Key = B-
Key when the Port_Teardown_Complete is
issued by A (see 4.3.3).

Issued – By the receiver of a
Port_Teardown_ACK Operation.

Effect – After the Op-timeout expires twice, both
the sender and receiver shall release this Virtual
Connection's Port and Key values. The delay
allows for lost or damaged Port_Teardown
Operations to be re-issued.

working draft - HIPPI-ST Rev 0.4, 2/28/97

19

8 Data movement

The Operations used for Scheduled Transfers are
detailed below, and summarized in table 3. All of
the Scheduled Transfer data transfer Operations
use the R_Port, S_Port, A-Key, and B-Key values
that were assigned during the Virtual Connection
setup (see 7.1 and 7.2). When end device A
issues the Operation:

R_Port = B-Port
S_Port = A-Port
Key = B-Key

Likewise, when end device B issues the
Operation:

R_Port = A-Port
S_Port = B-Port
Key = A-Key

For clarity and brevity, these values are not
discussed in the individual Operations. All other
Schedule Header parameters that are not listed in
a specific Operation shall be transmitted as
zeros. While a particular field usually carries the
parameter of the same name, fields sometimes
carry other parameter values. In the Operations
below, the specific parameter used in the
Operation is listed first, and if is not carried in the
field of the same name then the field name is
included in square brackets.

8.1 Request_To_Send

Request_To_Send asks that space be allocated
for a Transfer. Request_To_Send is issued by
the Originating Source to specify the number of
data bytes to be sent from the Originating Source
to the Final Destination. In addition, the
Originating Source shall specify whether 64-bit
address or Buffer Indexes are used, whether the
Final Destination's buffer should be persistent or
discarded after a Block, and the Data Channel
assignment for the data transfer. Note that the
end device on either end of the Virtual
Connection may issue a Request_To_Send. A
Request_To_Send, with Persistent = 1, is also
used to set up and expose memory for
Request_To_Receive Operations.

Semantics – Request_To_Send (
Op,
Flags,
R_Port,
S_Port,
Key,
S_id,
T_len)

Op = x'06'

Flags (see 6.2) shall specify the Concatenate,
Persistent, and Data Channel assignment
flags. Concatenate or Persistent shall only = 1
if the corresponding flag was set = 1 by the
other end during the Virtual Connection setup
(see 7.1 and 7.2), and the function is desired
for this Operation. The appropriate value for
the Interrupt flag shall also be carried (see
4.5.5).

S_id shall be the Originating Source's Transfer
identifier (see 4.4.2) used to identify this
Transfer. The Final Destination shall use this
value as the R_id parameter when replying to
the Originating Source concerning this
Transfer.

T_len shall specify the total number of data
payload bytes in the Transfer (see 4.4.3).

Issued – By the Originating Source after a Virtual
Connection has been established.

Effect – If accepted, the Final Destination shall
setup to receive the data, and then reply back to
the Originating Source with the associated
parameters. If rejected, the Final Destination
shall reply with Reject = 1 in a State_Response
Operation (see 4.5.3).

8.2 Request_To_Send_Response

Request_To_Send_Response shall inform the
Originating Source whether the transfer was
accepted or not. If accepted, the Request_To_
Send_Response specifies the Transfer identifier
(see 4.4.2) assigned by this end (i.e., the Final
Destination) for this Transfer, and the number of
STUs per Block (see 4.4.6). A
Request_To_Send_Response does not give the
Originating Source permission to start sending;
that comes from a Clear_To_Send. A
Clear_To_Send may be used instead of a

working draft - HIPPI-ST Rev 0.4, 2/28/97

20

Request_To_Send_Response if the Final
Destination is able to immediately accept the
data.

Semantics – Request_To_Send_Response (
Op,
Flags,
Blocksize [S_count],
R_Port,
S_Port,
Key,
R_id,
S_id,
T_len)

Op = x'07'

Flags (see 6.2) shall specify the Concatenate
flag. Concatenate shall only = 1 if Concatenate
was set = 1 by the remote end device during
the Virtual Connection setup (see 7.1 and 7.2).
The appropriate value for the Reject and
Interrupt flags shall also be carried (see 4.5.3
and 4.5.5).

Blocksize, carried in the S_count field, shall
specify the number of STUs in a Block (see
4.4.6).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the Originating Source in the
Request_To_Send Operation.

S_id shall be the Transfer identifier (see 4.4.2)
used by the Final Destination to identify this
Transfer. The Originating Source shall use this
value as the R_id parameter when replying to
the Final Destination concerning this Transfer.

T_len shall be the same value as in the
Request_To_Send Operation, but it need not
be checked by the Originating Source (see
4.4.3).

Issued – By the Final Destination.

Effect – The Originating Source shall segment
the Transfer into Blocks and STUs for
transmission.

8.3 Request_To_Receive

Request_To_Receive asks for a single Block of
data to be sent from a previously allocated
location in the Originating Source. The
Request_To_Receive specifies the number of

data bytes to be sent from the Originating Source
to the Final Destination, and whether 64-bit
addresses or Buffer Indexes are used at the
Originating Source, at the Final Destination, or at
both. A Request_To_Receive transfers a single
Block; there is no notion of a multi-Block
Request_To_Receive data movement.

When a Request_To_Receive is issued it is
assumed that the ULPs on both end devices had
previously allocated resources for the entire
Transfer through a previous Request_To_Send
Operation. Note that the device at either end of
the Virtual Connection may issue a
Request_To_Receive.

Semantics – Request_To_Receive (
Op,
Flags,
R_Port,
S_Port,
Key,
S_id,
Bufx,
Offset,
T_len,
OS_Bufx,
OS_Offset)

Op = x'08'

Flags (see 6.2) shall specify the Concatenate
and Source_Concatenate flags. Source_Con-
catenate shall only = 1 if the corresponding flag
was set by the other end device during the
Virtual Connection setup (see 7.1 and 7.2), and
the function is desired for this Operation. The
appropriate value for the Interrupt flag shall
also be carried (see 4.5.5).

S_id shall be the Transfer identifier (see 4.4.2)
used by the Final Destination to identify this
Transfer. The Originating Source shall use this
value as the R_id parameter when replying to
the Final Destination concerning this Transfer.

Bufx shall specify the initial Buffer Index in the
Final Destination where the data will be placed
(see 4.4.7).

Offset is a value that the Final Destination
wants to receive with the first STU of the Block
so that the data can be properly placed in the
Final Destination's memory (see 4.4.7).

T_len shall specify the total number of data
payload bytes in the Transfer (see 4.4.3).

working draft - HIPPI-ST Rev 0.4, 2/28/97

21

OS_Bufx shall specify the Originating Source's
Buffer Index (see 4.4.8).

OS_Offset shall specify the Originating
Source's offset value (see 4.4.8).

Issued – By the Final Destination.

Effect – If accepted, the Originating Source shall
send the specified Block of data. If rejected, the
Originating Source shall reply with Reject = 1 in a
State_Response Operation (see 4.5.3).

8.4 Clear_To_Send

Clear_To_Send shall be used to give the
Originating Source permission to send one Block.
Clear_To_Send may also be used to request
retransmission of a Block from systems that are
capable of retransmission.

Semantics – Clear_To_Send (
Op,
Flags,
Blocksize [S_count],
R_Port,
S_Port,
Key,
R_id,
S_id,
Bufx,
Offset,
T_len,
B_num,
I_Offset [OS_Offset])

Op = x'09'

Flags (see 6.2) shall specify the Concatenate
and Source_Concatenate flags. These flags
shall be the same value as in the
Request_To_Send Operation that initiated this
Transfer. The appropriate value for the
Interrupt flag shall also be carried (see 4.5.5).

Blocksize, carried in the S_count field, shall
specify the number of STUs in a Block (see
4.4.6).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the remote end (the Originating
Source) of the Virtual Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end (the Final Destination) of

the Virtual Connection.

Bufx shall specify the initial Buffer Index in the
Final Destination where the data will be placed
(see 4.4.7).

Offset is a value that the Final Destination
wants to receive with the first STU of a Block
so that the data can be properly placed in the
Final Destination's memory (see 4.4.7).

T_len shall be the same value as in the
Request_To_Send Operation that this
Clear_To_Send is responding to, but it need
not be checked by the Originating Source.

B_num shall be the Block number being given
permission to be transmitted (see 4.4.4).

I_Offset, carried in the OS_Offset field, shall
specify the Offset value associated with the
first Block of the Transfer (see 4.4.7).

Issued – By the Final Destination.

Effect – The Originating Source shall send the
specified Block.

8.5 DATA

A DATA Operation sends an STU of a Block from
the Originating Source to the Final Destination.
No STU shall be larger than the maximum STU
size determined during the Virtual Connection
setup (see 7.2), plus 40 bytes of Schedule
Header.

Semantics – DATA (
Op,
Flags,
S_count,
R_Port,
S_Port,
Key,
R_id,
S_id,
Bufx,
Offset,
Sync [T_len],
B_num)

Op = x'0A'

Flags (see 6.2) shall specify the Interrupt,
Notify, Send_State, Concatenate, First, and
Data Channel assignment flags (see 6.2).

working draft - HIPPI-ST Rev 0.4, 2/28/97

22

Concatenate shall be the same value as in the
Request_To_Send or Request_To_Receive
that initiated this Transfer. Send_State may be
sent with any STU of a Block. The
State_Response Control Operation associated
with this request shall be issued after
processing this STU when Send_State = 1 and
either Interrupt or Notify = 1. The sender shall
copy (in this DATA Operation) the Data
Channel assignment flags supplied in the
corresponding Request_To_Send Operation;
the value is a do not care at the receiver.

S_count shall be the STU number. S_count
shall be decremented before each STU is sent
(see 4.4.6).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the other end (the Final
Destination) of the Virtual Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end of the Virtual Connection.
Note that if this is the first STU associated with
a Request_To_Receive Operation, then this
Transfer identifier (see 4.4.2) is being assigned
by the Originating Source, and shall be used by
the Final Destination as the R_id parameter
when replying to the Originating Source
concerning this Transfer.

Bufx shall be the Buffer Index at the Final
Destination (see 4.4.7).

Offset shall be the Final Destination's offset
within a Bufx (see 4.4.7).

Sync, carried in the T_len field, shall be a value
assigned by the Originating Source to
synchronize the current view of the number of
empty Slots in the Final Destination (see 4.3.6).

B_num shall be the number of the Block that
this STU is a part of.

Issued – By the Originating Source.

Effect – The Final Destination shall place the
STU data in the memory area pointed to by Bufx,
and offset by the Offset value. The Final
Destination shall only accept data into pre-
allocated buffer regions. The Final Destination is
responsible for ensuring that all of the Blocks of a
Transfer are received. The actions to be taken if
a Block is missing are beyond the scope of this
standard.

8.6 Request_State

Request_State is used to request that the remote
end device provide its current number of empty
Slots for Schedule Headers, the Block number
associated with the last set of contiguously good
data received, and whether the named Block was
received correctly.

Semantics – Request_State (
Op,
Flags,
R_Port,
S_Port,
Key,
R_id,
S_id,
Sync [T_len],
B_num)

Op = x'0B'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the remote end device of this
Virtual Connection. R_id = x'0000' means that
the receiver shall not look for a current
Transfer, and only return the current number of
empty Slots for this Virtual Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end of the Virtual Connection.
If R_id = x'0000', then S_id shall also be
x'0000'.

Sync, carried in the T_len field, shall be a value
assigned by the local end device (sender) to
synchronize the current view of the number of
empty Slots in the remote end device
(receiver). (See 4.3.6.)

B_num shall indicate the Block number being
queried. B_num = x'FFFFFFFF' indicates that
the sender does not care about the status of
any particular Block.

Issued – By an end device that needs state
information from the remote end device of the
Virtual Connection. The sender may not have
received a State_Responses that it expected, and
can send a Request_State to recover from a lost
or damaged State_Response.

Effect – The receiver shall reply with a
State_Response.

working draft - HIPPI-ST Rev 0.4, 2/28/97

23

8.7 State_Response

State_Response shall be used to indicate the
number of empty Slots in this Port of the Virtual
Connection (see 4.3.6). State_Response with
Reject = 1 is also the response to a
Request_To_Receive that was rejected (see
4.5.3). State_Response may also indicate the
highest numbered contiguous Block received
correctly, and whether the Block indicated in the
B_num field was received correctly (see 4.5.2).

Semantics – State_Response (
Op,
Flags,
C-Slots [S_count],
R_Port,
S_Port,
Key,
R_id,
S_id,
B_seq [Offset],
Sync [T_len],
B_num)

Op = x'0C'

Flags (see 6.2) shall specify Reject = 1 if the
immediately previous Request_To_Receive
was rejected (see 4.5.3). The appropriate
value for the Interrupt flag shall also be carried
(see 4.5.5).

C-Slots, carried in the S_count field, shall
indicate the sender's view of the number of
empty Slots it has available for additional
Operations. (See 8.5.) C-Slots = x'FFFF' (i.e.,
-1) shall indicate that this end device does not
implement the Slots mechanism for Operations
flow control.

R_id shall echo the S_id value in the
Request_State or DATA Operation that
triggered this State_Response.

S_id shall echo the R_id value in the
Request_State or DATA Operation that
triggered this State_Response. S_id = x'0000'
shall mean that the B_seq and B_num
parameters, are meaningless.

B_seq, carried in the Offset field, shall indicate
the highest numbered contiguous Block
received correctly. B_seq = x'FFFFFFFF' shall
indicate that no Transfers are in progress or no
Blocks have been received.

Sync, carried in the T_len field, is echoed from
the Request_State, or DATA Operation with
Send_State = 1, that initiated this
State_Response Operation (see 4.3.6).

B_num shall echo the Block number, carried in
the B_num field of the DATA Operation or the
Request_State Operation, if the indicated Block
was received correctly. If the indicated Block
has not been correctly received then B_num
shall contain x'FFFFFFFF'; the Sync value can
be used by the receiving end to identify the
Operation containing the B_num being queried.

Issued – It is intended that a State_Response be
issued by an end device's ULP after receiving
Send_State = 1 in a DATA Operation, or after
receiving a Request_State Operation, or to reject
an Operation.

Effect – State information is passed to the other
end of the Virtual Connection.

8.8 END

END allows either end of the Virtual Connection
to terminate a Scheduled Transfer before it has
completed, and to terminate a Scheduled
Transfer of unlimited size.

Semantics – END (
Op,
Flags,
R_Port,
S_Port,
Key,
R_id
S_id)

Op = x'0D'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the other end of the Virtual
Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end of the Virtual Connection.
This S_id value shall not be reused until an
END_ACK is received.

Issued – By the Originating Source or the Final
Destination.

working draft - HIPPI-ST Rev 0.4, 2/28/97

24

Table 2 – Virtual Connection Operations summary between end devices A and B

Op Flags S_count R_Port S_Port Key Bufx Offset T_len B_num

RQP x'01' OIUCP A-Slots B-Port A-Port * A-Bufsize A-Key A-Max-STU EtherType

RQPR x'02' OIUCPR B-Slots A-Port B-Port A-Key B-Bufsize B-Key B-Max-STU *

PT x'03' I * R_Port S_Port R-Key * * *

PTA x'04' I * R_Port S_Port R-Key * * *

PTC x'05' I * R_Port S_Port R-Key * * *
NOTES –

1 – Operation abbreviations:
PT = Port_Teardown
PTA = Port_Teardown_ACK
PTC = Port_Teardown_Complete
RQP = Request _Port
RQPR = Request_Port_Response

2 – Flag abbreviations are: O = Out_of_Order, I = Interrupt, U = Source_Concatenate, C = Concatenate,
 P = Persistent, R = Reject
3 – R-Key = Key value the receiver binds to, e.g., R-Key = A-Key when Operation issued by device B.
4 – R_Port = Port number in device receiving the Operation, e.g., R_Port = A-Port when issued by device B.
5 – S_Port = Port number in device sending the Operation, e.g., S_Port = B-Port when issued by device B.
6 – The Schedule Header parameters that are not shown shall be transmitted as zeros.

SYMBOLS -
* = Unused value, transmit as 0
Values in bold italics are assigned by the specific Operation, and may be used by later Operations

Effect – A Final Destination receiving an END
shall stop sending Control Operations associated
with this Scheduled Transfer. An Originating
Source receiving an END shall stop sending
Control Operations and STUs associated with this
Scheduled Transfer. An END kills a Scheduled
Transfer, but shall not affect the Virtual
Connection carrying the Scheduled Transfer.

8.9 END_ACK

END_ACK confirms that the sending end device
has seen, and acted on, the END.

Semantics – END_ACK (
Op,
Flags,
R_Port,
S_Port,
Key,
R_id,
S_id)

Op = x'0E'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the remote end device of this
Virtual Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end of the Virtual Connection.
This S_id value should not be immediately
reused to avoid aliasing.

Issued – By the end of the Virtual Connection that
received the END Operation.

Effect – Acknowledgment that the Scheduled
Transfer has been terminated.

working draft - HIPPI-ST Rev 0.4, 2/28/97

25

Table 3 – Data transfer and status Operations summary between end devices G and H

Op Flags S_count R_id S_id Bufx Offset T_len B_num OS_Bufx OS_Offset

RTS x'06' ICPD * * G_id * * T_len * * *

RTSR x'07' ICR Blocksize G_id H_id * * T_len * * *

RTR x'08' IUC * R_id S_id Bufx Offset T_len * OS_Bufx OS_Offset

CTS x'09' UC Blocksize R_id S_id Bufx Offset * B_num * I_Offset

DATA x'0A' INSCFD S_count R_id S_id Bufx Offset Sync B_num Opaque Opaque

RS x'0B' I * R_id S_id * * Sync B_num * *

SR x'0C' R C-Slots R_id S_id * B_seq Sync B_num * *

END x'0D' I * R_id S_id * * * * * *

ENDA x'0E' I * R_id S_id * * * * * *
NOTES –

1 – Operation abbreviations:
CTS = Clear_To_Send
ENDA = END_ACK
RS = Request_State
RTR = Request_To_Receive
RTS = Request_To_Send
RTSR = Request_To_Send_Response
SR = State_Response

2 – Flag abbreviations are: I = Interrupt, N = Notify ULP, S = Send_State, U = Source_Concatenate,
 C = Concatenate, P = Persistent, F = First STU of Block, R = Reject, D = Data Channel assignment
3 – R_id = Transfer identifier in device receiving the Operation, e.g., R_id = G_id when issued by device H.
4 – S_id = Transfer identifier in device sending the Operation, e.g., S_id = H_id when issued by device H.
5 – Schedule Header parameters that shall be transmitted as assigned in RQP and RQPR Operations:

R_Port = Port number of the device receiving the Operation
S_Port = Port number of the device sending the Operation
Key = Key value assigned by the device receiving the Operation

SYMBOLS -
* = Unused value, transmit as 0
Values in bold italics are assigned by the specific Operation, and may be used by later Operations

working draft - HIPPI-ST Rev 0.4, 2/28/97

26

9 Error processing

Table 5 is a summary of the logged errors.

9.1 Operation timeout

Errors other than syntactic errors are manifested
as missing Operations, occurring when the
underlying physical media discards or damages a
transmission (see 4.5.4). Such errors are
detected by Op-timeout, which is system and/or
Port dependent. Example means for determining
the Op-timeout value for a Virtual Connection
include:

– a time longer than the measured round-trip
time through the software path (use a
Request_State / State_Response pair to
measure on a per-Port basis); or

– a long fixed time period.

Another system dependent parameter,
Max_Retry, specifies the maximum number of
times to retry an Operation. If Max_Retry is
reached without success, then the Operation is
considered to be aborted and control shall be
passed to ULPs.

Open Issue – Do we want to log Op-timeout
occurrences? Max-Retry occurrences? The
Operation that caused the timeout?

9.2 Operation Pairs

Table 4 lists the Operation pairs – command and
response, or response and completion – that shall
be retried if the associated response is not
received within an Op-timeout.

In addition to the entries in table 4,
State_Response is a corresponding pair for
DATA Operations which have Send_State = 1. If
the State_Response is not received, then the
Originating Source may send a Request_State to
obtain the state information.

Clear_To_Send and Request_To_Receive
Operations (which expect a DATA Operation in
response) may or may not use the Op-timeout to
indicate failure. The ULP in the Final Destination
that issues the Clear_To_Send, or
Request_To_Receive, is responsible for timing
out these data movement operations.

Table 4 – Operation pairs guarded by Op-
timeout

Operation Response

Request_Port Request_Port_Response

Port_Teardown Port_Teardown_ACK

Port_Teardown_ACK Port_Teardown_Complete

Request_To_Send Request_To_Send_Response,

or Clear_To_Send, or

State_Response, or

Request_To_Receive when
Persistent = 1

Request_To_Receive DATA or State_Response

Request_State State_Response

END END_ACK

9.3 Syntax errors

9.3.1 Undefined Opcode

An undefined Opcode value may occur due to bit
errors, or if the sending device is using a future
superset of the Scheduled Transfer Operations.
The Operation shall be discarded, an
Undefined_Opcode_Error shall be logged, and
the Opcode logged in Undefined_Opcode_Value.

9.3.2 Unexpected Opcode

Most of the Operations require previous
Operations to setup state on each device. If a
device receives an out of sequence Opcode,
(e.g., receiving a Request_Port_Response
without sending the initiating
Request_To_Send_Response), the Operation
shall be discarded, an
Unexpected_Opcode_Error shall be logged, and
the Opcode logged in
Unexpected_Opcode_Value.

working draft - HIPPI-ST Rev 0.4, 2/28/97

27

9.4 Virtual Connection errors

9.4.1 Invalid Key or Port

All Operations, excluding Request_Port, should
have a Key value that validates the Operation for
the Virtual Connection. Operations with an
invalid Key shall not be executed, and an
Invalid_Key_Error shall be logged.

All Operations should have a valid Destination
Port value. All Operations, excluding
Request_Port, should have a Source Port value
that matches the state for this Virtual Connection.
Operations with an invalid Port shall not be
executed, and an Invalid_Port_Error shall be
logged.

NOTE – Multiple contiguous invalid Key and/or Port
values may indicate a problem with the link, or a
malicious host on the network. The supervising
process should be informed.

9.4.2 Slots exceeded

Operations that exceed the number of Slots for
the Virtual Connection may not be executed, and
a Slots_Exceeded_Error shall be logged.

9.4.3 Unknown EtherType

If a Request_Port Operation contains an unknown
EtherType, the receiver shall issue a
Request_Port_Response with the Reject bit set
and log an Unknown_EtherType_Error.

9.4.4 Illegal Bufsize

If a Request_Port contains a Bufsize value that is
less than 256 bytes, or is not a power of 2, then
the receiver shall respond with a
Request_Port_Response with Reject = 1. If a
Request_Port_Response contains a Bufsize
value that is less than 256 bytes, or is not a
power of 2, then the receiver shall respond with a
Port_Teardown. In either case, an
Illegal_Bufsize_Error shall be logged.

9.4.5 Illegal STU size

The maximum STU sizes (A-Max-STU and B-
Max-STU) were determined during the Virtual
Connection setup (see 4.3.5, 7.1 and 7.2). If the
received STU is greater than the maximum STU

size, then the STU shall be discarded and an
Illegal_STU_Size_Error shall be logged.

9.5 Scheduled Transfer errors

9.5.1 Invalid S_id

All Scheduled Transfer Operations, except
Request_To_Send should have a valid
Destination id (R_id) for quickly accessing state
information for this Scheduled Transfer. After
checking the R_id, the S_id should match the
stored value for this Transfer. An invalid S_id
shall result in not executing the Operation, and
logging an Invalid_S_id_Error.

9.5.2 Bad Data Channel specification

During a Request_To_Send Operation, the
sending device declares the lower layer Data
Channel that will carry DATA Operations for this
Scheduled Transfer. Some Data Channels may
not be available for Scheduled Transfers
depending on the lower layer, (e.g., b'00' is not a
valid choice on HIPPI-6400 as it indicates VC0
which is reserved for Control Operations). The
receiver shall issue a
Request_To_Send_Response with the Reject bit
set.

9.5.3 Concatenate not available

If the Virtual Connection did not specify the
capability for Concatenation (see 4.3.7) during
the Virtual Connection establishment (see 7.1
and 7.2), any Scheduled Transfer Operations on
this Virtual Connection with the Concatenate bit
set shall not be executed. The Operation shall be
discarded and a Concatenate_Error logged.

Open Issue – Should we make a more positive
response by signaling a Reject?

9.5.4 Source_Concatenate not available

If the Virtual Connection did not specify the
capability for Source_Concatenate (see 4.3.8)
during the Virtual Connection establishment (see
7.1 and 7.2), any Scheduled Transfer Operations
on this Virtual Connection with the
Source_Concatenate bit set shall not be
executed. The Operation shall be discarded and
a Source_Concatenate_Error logged.

working draft - HIPPI-ST Rev 0.4, 2/28/97

28

Open Issue – Should we make a more positive
response by signaling a Reject?

9.5.5 Persistent not available

If the Virtual Connection did not specify the
capability for Persistent (see 4.3.9) during the
Virtual Connection establishment (see 7.1 and
7.2), any Scheduled Transfer Operations on this
Virtual Connection with the Persistent bit set shall
not be executed. The Operation shall be
discarded and a Persistent_Error logged.

Open Issue – Should we make a more positive
response by signaling a Reject?

9.5.6 Out of Range B_num, Bufx, Offset,
S_count, or Sync

During the Clear_To_Send, DATA, and
State_Response Operations a Block number may
appear that is outside the calculated number of
Blocks for the Transfer. If an out of range Block
number is encountered, the receiver shall not
execute the Operation, and shall log an
Out_Of_Range_B_num_Error.

If a DATA Operation contains a Bufx and/or
Offset that exceeds the buffer range allocated by
the Final Destination for outstanding
Clear_To_Sends, then the receiver shall not
execute the Operation, and shall log an
Out_Of_Range_Bufx_Error.

If a DATA Operation contains an Offset larger
than the buffer size, the receiver shall not
execute the Operation, and shall log an
Oversized_Offset_Error.

If a DATA Operation without the “First STU of
Block” flag bit contains an S_count that is not one
less than the previous STU (for this Scheduled
Transfer), then the STU is out of order. The
receiver shall discard the STU and log an
Out_Of_Order_STU_Error.

9.5.7 Request_To_Receive problem

The Request_To_Receive Operation must be
setup by a previous Request_To_Send Operation
(see 8.3). If an associated Request_To_Send
has not been received, then the
Request_To_Receive Operation shall be

discarded, a State_Response with Reject = 1 sent
to the remote end device in response, and a
Request_To_Receive_Error logged.

9.5.8 Undefined Flag

If a received Operation contains a flag =1, and
use of that flag is not defined for that Operation,
then the flag shall be ignored and an
Improper_Flag_Use_Error logged.

Open Issue – How long should Sources save their
transmit buffers for possible retransmission?

working draft - HIPPI-ST Rev 0.4, 2/28/97

29

Table 5 – Summary of logged errors

Name Occurs in Operation

Concatenate_Error RTS, RTSR, RTR, CTS

Illegal_STU_Size_Error DATA

Illegal_Bufsize_Error RQP, RQPR

Improper_Flag_Use_Error all

Invalid_Key_Error all except RQP

Invalid_Port_Error all

Invalid_S_id_Error all with an R_id

Out_Of_Order_STU_Error DATA

Out_Of_Range_B_num_Error CTS, DATA, RS, SR

Out_Of_Range_Bufx_Error DATA

Oversized_Offset_Error DATA

Persistent_Error RTS

Request_To_Receive_Error RTR

Slots_Exceeded_Error all with Opcode ≥ 6

Source_Concatenate_Error RTR, CTS

Undefined_Opcode_Error not applicable

Undefined_Opcode_Value not applicable

Unexpected_Opcode_Error all except RQP

Unexpected_Opcode_Value all except RQP

Unknown_EtherType_Error RQP

Operation abbreviations:
CTS = Clear_To_Send
RQP = Request_Port
RQPR = Request_Port_Response
RS = Request_State
RTR = Request_To_Receive
SR = State_Response

working draft - HIPPI-ST Rev 0.4, 2/28/97

30

Annex A
(normative)

Using HIPPI-6400-PH as the lower layer

As shown in figure A.1 HIPPI-ST Operations shall
be carried over HIPPI-6400-PH with the first eight
bytes of the HIPPI-ST Schedule Header
occupying the last eight bytes of the HIPPI-6400-

PH Header micropacket. ANSI X3.xxx defines
HIPPI-6400-PH, portions of which are repeated
here as an aid to the reader.

D_ULA

M_len

(lsb)

(lsb)HIPPI-6400-PH
MAC Header

D_ULA S_ULA

S_ULA

DSAP SSAP Ctl Org

Org Org EtherType

IEEE 802.2
 LLC/SNAP

Header

40-byte HIPPI-ST
Schedule Header

(as shown in figure 7)

Optional 32-byte payload
(in all except DATA Operations)

or

Up to (2 – 64) bytes (approx. 4 gigabytes)
HIPPI-ST data payload (i.e., STU)

(in DATA Operations)

32-byte
HIPPI-6400-PH
Type = Header

micropacket

First 32-byte
HIPPI-6400-PH

Type = Data
micropacket

Additional 32-byte
HIPPI-6400-PH

Type = Data
micropacket(s)

32

Figure A.1 – HIPPI-ST Operations carried in HIPPI-6400-PH Messages

working draft - HIPPI-ST Rev 0.4, 2/28/97

31

All HIPPI-ST Control Operations (i.e., all
Operations except DATA Operations) shall be
carried on HIPPI-6400-PH Virtual Channel VC0.
DATA Operations shall use Data Channel 1, 2, or
3 as specified in the HIPPI-ST Data Channel
Assignment flag bits (see 6.2), and carried in a
Request_To_Send Operation (see 8.1).

HIPPI-ST shall also specify the EtherType value
that is placed in the HIPPI-6400-PH MAC Header
(see the reference for RFC 1700 in 4.3.2).

Since HIPPI-6400-PH has a 32-byte granularity,
HIPPI-ST must also provide the data payload
with a 32-byte granularity. If the user's data is not
an integral multiple of 32-byte units, then HIPPI-
ST shall provide any necessary pad data, but
shall not include the pad data in the length
parameter passed to HIPPI-6400-PH. The data
payload delivered to the HIPPI-ST receiver will
have any pad data removed.

working draft - HIPPI-ST Rev 0.4, 2/28/97

32

Annex B
(normative)

Using HIPPI-FP as the lower layer

The information for this annex will probably be based
on Craig Davidson's "Translating Scheduled Transfer
Protocol Between HIPPI-6400 and HIPPI-FP" proposal.

working draft - HIPPI-ST Rev 0.4, 2/28/97

33

Annex C
(informative)

Scheduled Transfer example

Open Issue – This annex has not been updated to match the rest of the document. Hence, the original text has
been deleted as being more confusing than helpful. It will be updated and added again as time permits.

